ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79240
Темы:    [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?


Решение

Введём на плоскости систему координат так, чтобы вершины исходного квадрата получили координаты  (0, 0),  (1, 0),  (0, 1),  (1, 1),  причём кузнечики сидели в первых трёх вершинах. Легко заметить, что кузнечики всё время прыгают по целочисленной решетке, причём каждым прыжком меняют как свою абсциссу, так и ординату на чётное число. Поэтому чётность их координат не меняется. В частности, они не могут попасть в точку  (1, 1).


Ответ

Не может.

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1973
выпуск
Номер 10
Задача
Номер М226
олимпиада
Название Московская математическая олимпиада
год
Номер 36
Год 1973
вариант
Класс 8
Тур 1
задача
Номер 5
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 23
Название Делимость, инварианты, раскраски
Тема Неопределено
параграф
Номер 4
Название Вспомогательные раскраски в шахматном порядке
Тема Шахматная раскраска
задача
Номер 23.024

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .