ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97863
Темы:    [ Признаки делимости на 3 и 9 ]
[ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Фомин Д.

Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?


Решение

Очевидно, что число и его сумма цифр дают одинаковые остатки при делении на 3. Поэтому последовательность остатков при делении на 3 имеет вид: 1, 2, 1, 2, ..., и в ней не встретится 0 (остаток от деления 123456 на 3).


Ответ

Не встретится.

Замечания

1. Задача предлагалась также на 51-й Ленинградской математической олимпиаде (1985, 6 кл., зад. 1).

2. 5 баллов.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант весенний тур, подготовительный вариант, 7-8 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .