ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102295
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касательные прямые и касающиеся окружности ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружность, проходящая через вершину P треугольника PQR, касается стороны QR в точке F и пересекает стороны PQ и PR соответственно в точках M и N, отличных от вершины P. Найдите отношение QF : FR, если известно, что длина стороны PQ в полтора раза больше длины стороны PR, а отношение QM : RN = 1 : 6.

Подсказка

Примените теорему о касательной и секущей.

Ответ

1 : 2.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3722

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .