ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102334
Темы:    [ Касающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружности радиусов 2 и 6 с центрами соответственно в точках и O1 и O2 касаются внешним образом в точке C. К окружностям проведены общая внешняя касательная и общая внутренняя касательная. Эти касательные пересекаются в точке D. Найдите радиус вписанной в треугольник O1O2D окружности.

Подсказка

Докажите, что DB — высота прямоугольного треугольника O1DO2, проведённая из вершины прямого угла D.

Ответ

2($ \sqrt{3}$ - 1).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3762

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .