ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102808
Темы:    [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенство треугольника ]
Сложность: 3
Классы: 7,8
В корзину
Прислать комментарий

Условие

Расстояния до вершин квадрата. Могут ли расстояния от некоторой точки на плоскости до вершин некоторого квадрата быть равными 1, 4, 7 и 8?

Решение

Допустим что это возможно и такая точка O существует. Пусть A, B, C, D — вершины квадрата (перечисленные не обязательно в порядке обхода контура), причем OA = 4, OB = 1. Тогда из неравенства треугольника для треугольника OAB получаем, что AB не меньше 5. Т.к. АВ — это либо сторона квадрата, либо диагональ, то мы заключаем отсюда, что длина стороны квадрата не превосходит 5. Один из отрезков BC и BD является стороной квадрата. Пусть это будет отрезок BC. Тогда в треугольнике OBC длина OC равна 7 или 8, OB = 1, BC не превосходит 5. Получили противоречие с неравенством треугольника. Значит, ситуация, описанная в условии, невозможна.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 14
задача
Номер 14.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .