ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102896
Тема:    [ Паросочетания ]
Сложность: 4
Классы:
Название задачи: Открытки и конверты .
В корзину
Прислать комментарий

Условие

Жюри решило поздравить авторов метода Форда-Фалкерсона, алгоритмов Флойда-Беллмана, Кнута-Морриса-Пратта, формы Бэкуса-Науэра, схемы Ривеста-Шамира-Адлемана и других классиков Computer Science с наступающим 4 июля (Днем независимости). Для этого было куплено N открыток и M конвертов. К сожалению, конверты и открытки оказались разных размеров, и некоторые открытки помещаются не во все конверты. Напишите программу, находящую такое распределение открыток по конвертам, при котором поздравления получат наибольшее число классиков Computer Science. В один конверт разрешается вкладывать не более одной открытки. 

Входные данные

В первой строке входного файла записаны числа M и N (0 ≤ M, N ≤ 100). Далее записаны высота и ширина каждого из M конвертов, затем – высота и ширина каждой из N открыток. Размеры конвертов и открыток являются натуральными числами, не превосходящими 32767, и разделяются пробелами и/или символами перевода строки.

Выходные данные
Выведите в выходной файл целое число K – максимальное количество открыток, которые можно разложить по конвертам. Далее выведите K пар целых чисел, означающих номер открытки и номер конверта, в который ее необходимо положить.

Пример входного файла

4 4
3 3 141 282 282 141 200 100
3 1 140 280 141 282 201 1

Пример выходного файла

4
1 1 2 3 3 2 4 4

Решение

Скачать архив тестов и решений

Построим двудольный граф, вершинами первой доли которого являются открытки, вершинами второй доли – конверты, а существование ребра между вершинами двух долей соответствует возможности вложения данной открытки в данный конверт. Тем самым, исходная задача распалась на две. Одна из них состоит в определении возможности поместить один прямоугольник внутрь другого (не забывайте, что открытку в конверт можно вкладывать под углом) и решается с использованием несложных геометрических соображений (см. решение задачи 10 в [Бадин 95]). Другая задача – нахождение наибольшего паросочетания в полученном графе.

Источники и прецеденты использования

книга
предмет информатика
Автор Беров В., Лапунов А., Матюхин В., Пономарев А.
Название Особенности национальных задач по информатике
Издательство Триада-С
Год издания 2000
глава
Номер 3
Название Алгоритмы на графах
Задача
Номер 13

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .