ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103739
Темы:    [ Перенос помогает решить задачу ]
[ Средняя линия треугольника ]
[ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8
В корзину
Прислать комментарий

Условие

Внутри квадрата ABCD расположен квадрат KMXY. Докажите, что середины отрезков AK, BM, CX и DY также являются вершинами квадрата.

Подсказка

Строгого решения этой задачи не требуется. Достаточно интуитивного обоснования. Рассмотрите сначала более простой случай, когда центры квадратов совпадают. Затем вырежьте меньший квадрат из картона и подвигайте его внутри большого квадрата, следя за перемещениями середин интересующих нас отрезков.

Решение

Если маленький квадрат сдвинуть (без вращения) так, чтобы его центр совпал с центром большого квадрата, то середины всех четырёх отрезков AK, BM, CX и DY сдвинутся (одинаково!) на половину длины сдвига маленького квадрата. Поэтому, если они стали вершинами некоторого квадрата, то и до сдвига они были вершинами некоторого квадрата. Осталось заметить, что если центры квадратов совпадают, то вся ''картинка'' переходит в себя при поворотах на 90o, 180o и 270o.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1990
класс
1
Класс 6,7
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .