ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103773
Темы:    [ Наглядная геометрия в пространстве ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7
В корзину
Прислать комментарий

Условие

Автор: Ботин Д.А.

Из кубика Рубика 3×3×3 удалили центральный шарнир и восемь угловых кубиков. Можно ли оставшуюся фигуру из 18 кубиков составить из шести брусков размером 3×1×1?


Ответ

 Да, см. рисунок.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1993
класс
1
Класс 7
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .