ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103872
Тема:    [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7
В корзину
Прислать комментарий

Условие

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.


Подсказка

Не стремитесь закрасить целиком стороны, оставьте середины сторон незакрашенными.


Решение

а, б) Если мы умеем закрашивать 33 клетки, то 32 клетки можно закрасить, вовремя остановившись. Три примера, в которых закрашены 33 клетки, изображены на рисунке (на самом деле таких примеров гораздо больше). Больше 33 клеток закрасить нельзя — это проверено на компьютере.


Ответ

 а, б) См. рисунок. Другие примеры приведены в решении.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2002
класс
1
Класс 6
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .