ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103913
Темы:    [ Вписанный угол равен половине центрального ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Доказать, что, если  ∠BAO = ∠DAC,  то диагонали четырёхугольника перпендикулярны.


Решение

Так как  ∠BAO = ½ (π – ∠AOB) = π/2 – ∠ADB,  то  ∠DAC + ∠ADB = π/2,  что равносильно утверждению задачи (см. рис.).

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2005
класс
Класс 9
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .