ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 105197
Темы:    [ Арифметика. Устный счет и т.п. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

В олимпиаде участвовали 2006 школьников. Оказалось, что школьник Вася из всех шести задач решил только одну, а число участников, решивших
  хотя бы 1 задачу, в 4 раза больше, чем решивших хотя бы 2;
  хотя бы 2 задачи, в 4 раза больше, чем решивших хотя бы 3;
  хотя бы 3 задачи, в 4 раза больше, чем решивших хотя бы 4;
  хотя бы 4 задачи, в 4 раза больше, чем решивших хотя бы 5;
  хотя бы 5 задач, в 4 раза больше, чем решивших все 6.
Сколько школьников не решили ни одной задачи?


Решение

Число школьников, решивших хотя бы одну задачу, больше нуля (поскольку среди них – Вася), меньше 2006 и делится на  45 = 1024.  Следовательно, оно равно 1024, а ни одной задачи не решили  2006 – 1024 = 982  школьника.


Ответ

982 школьника.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 62
Год 2006
вариант
Класс 8
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .