ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 107858
Темы:    [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Подсчет двумя способами ]
[ Ортогональная (прямоугольная) проекция ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.


Решение 1

Увеличим каждого прямоугольника сторону, перпендикулярную отмеченной, до 1. При этом его площадь не уменьшится и станет (численно) равной длине выбранной стороны. Таким образом, сумма длин выбранных сторон равна сумме площадей удлинённых прямоугольников, которая, в свою очередь, не меньше площади единичного квадрата.


Решение 2

Спроектируем все отмеченные отрезки на одну из сторон квадрата. Если она полностью покрыта проекциями, то их суммарная длина не меньше 1. Если на стороне есть точка, не покрытая проекциями, то проведём через неё перпендикуляр к стороне. Этот перпендикуляр покрыт прямоугольниками, в которых отмечена сторона, параллельная ему (иначе основание перпендикуляра покрыто проекцией отмеченной стороны), значит, суммарная длина этих отрезков равна 1.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 61
Год 1998
вариант
Класс 10
задача
Номер 2
журнал
Название "Квант"
год
Год 1998
выпуск
Номер 3
Задача
Номер М1637
олимпиада
Название Турнир городов
Турнир
Дата 1997/1998
Номер 19
вариант
Вариант весенний тур, основной вариант, 10-11 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .