ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108005
УсловиеДокажите, что отрезки, соединяющие вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями, пересекаются в одной точке {(точка Нагеля))ПодсказкаПримените теорему Чевы.
РешениеРассмотрим треугольник ABC . Обозначим BC=a , AC=b , AB=a . Пусть A' , B' , C' – точки касания вневписанных окружностей треугольника со сторонами BC , AC , AB соответственно, K – точка касания первой из этих окружностей с продолжением стороны AB , p – полупериметр треугольника. ТогдаАналогично Поэтому Следовательно, по теореме Чевы отрезки AA' , BB' и CC' пересекаются в одной точке. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|