ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108035
Тема:    [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.


Решение

Пусть стороны треугольника равны  n – 1,  n и  n + 1,  отрезки, на которые высота делит основание, – x и y, высота – h. (см. рисунок).

Тогда  (y – x)n = (y – x)(y + x) = y² – x² = (y² + h²) – (x² + h²) = (n + 1)² – (n – 1)² = 4n.  Отсюда  y – x = 4.

Замечания

3 балла

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4315
олимпиада
Название Турнир городов
Турнир
Дата 1989/1990
Номер 11
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .