ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108600
Темы:    [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают.


Решение 1

Точки A2, B2 и C2 совпадают с ортоцентром H треугольника ABC – см. решение задачи 108949.


Решение 2

Пусть O – центр окружности. Имеем:     Следовательно,     То же верно для     и  

Замечания

4 балла

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4276
олимпиада
Название Турнир городов
Турнир
Номер 15
Дата 1993/1994
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .