ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108635
Темы:    [ Медиана, проведенная к гипотенузе ]
[ Неравенство треугольника ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости даны треугольник ABC и такие точки D и E, что  ∠ADB =  ∠BEC = 90°.
Докажите, что длина отрезка DE не превосходит полупериметра треугольника ABC.


Решение

  Пусть F и G – середины сторон AB и BC соответственно. Тогда  DF = ½ AB,  EG = ½ BC.
  Кроме того, FG – средняя линия треугольника ABC, поэтому  FG = ½ AC.  Следовательно,  DE ≤ DF + FG + EG = ½ (AB + AC + BC).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4451

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .