ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108670
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Диагонали параллелограмма ABCD пересекаются в точке O . Окружность, описанная вокруг треугольника ABO , пересекает сторону AD в точке E . Окружность, описанная вокруг треугольника DOE , пересекает отрезок BE в точке F . Докажите, что BCA = FCD .

Решение

По теореме о вписанных углах и свойству вписанного четырёхугольника

EFD = EOD = 180o- BOE= BAE = BCD.

Поэтому
BFD = 180o - EFD = 180o- BCD.

Значит, четырёхугольник BFDC – вписанный. Тогда
BCF = BDF = OEF = OEB = OAB = OCD.

Следовательно, BCA = FCD .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4496

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .