ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108894
Темы:    [ Точка Микеля ]
[ Три окружности пересекаются в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.

Решение

Докажем сначала следующее утверждение: если четыре прямые образуют четыре треугольника, то описанные окружности этих треугольников имеют общую точку ({точка Микеляя

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6243

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .