ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108919
Темы:    [ Вспомогательные равные треугольники ]
[ Четырехугольник (неравенства) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Диагонали четырёхугольника ABCD пересекаются в точке E. Известно, что  AB = CE,  BE = AD,  ∠AED = ∠BAD.  Докажите, что  BC > AD.


Решение

Поскольку  ∠BAD = ∠AED = ∠CEB,  треугольники BAD и CEB равны по двум сторонам и углу между ними. Следовательно,  BC = BD > BE= AD.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6270

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .