ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108922
Тема:    [ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC проведена биссектриса BL. Известно, что  BL = AB.  На продолжении BL за точку L выбрана точка K, причём  ∠BAK + ∠BAL = 180°.  Докажите, что  BK = BC.


Решение

Обозначим  ∠BLA = ∠A = α.  Тогда  ∠BLC = 180° – α = ∠BAK.  Значит, треугольники BLC и BAK равны по стороне и двум прилежащим к ней углам. Следовательно,  BK = BC.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6273

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .