ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108933
Темы:    [ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD  AB = BC.  Лучи BA и CD пересекаются в точке E, а лучи AD и BC – в точке F. Известно также, что  BE = BF  и
DEF = 25°.  Найдите угол EFD.


Решение

Треугольники BCE и BAF равны по двум сторонам и углу между ними, поэтому  ∠BEC = ∠BFA.  Треугольник EBF – равнобедренный, поэтому
BEF = ∠BFE.  Следовательно,  ∠EFD = ∠EFA = ∠BFE – ∠BFA = ∠BEF – ∠BEC = ∠CEF = ∠DEF = 25°.


Ответ

25°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6284

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .