ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109316
Темы:    [ Касательные к сферам ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Через точку A , расположенную вне сферы, проведены две прямые. Одна из них касается сферы в точке B , а вторая пересекает её в точках C и D . Докажите, что AB2 = AC· AD .

Решение

Рассмотрим сечение сферы плоскостью, проходящей через пересекающиеся прямые AB и AC . Получим окружность, к которой из точки A проведены касательная AB ( B – точка касания) и секущая ACD . По теореме о касательной и секущей AB2 = AC· AD . Что и требовалось доказать.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8352

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .