ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111210
Темы:    [ Отношение объемов ]
[ Прямая призма ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Основание прямой призмы KLMNK1L1M1N1 – ромб KLMN с углом 60o при вершине K . Точки E и F – середины рёбер LL1 и LM призмы. Ребро SA правильной четырёхугольной пирамиды SABCD ( S – вершина) лежит на прямой LN , вершины D и B – на прямых MM1 и EF соответственно. Найдите отношение объёмов призмы и пирамиды, если SA=2AB .

Решение

Прямая LN перпендикулярна двум пересекающимся прямым KM и LL1 плоскости MM1K1K , поэтому прямая LN перпендикулярна этой плоскости. Тогда, любая прямая, проходящая через точку P перпендикулярно NL (или совпадающей с ней прямой SA ), лежит в плоскости MM1K1K . Известно, что боковое ребро правильной четырёхугольной пирамиды перпендикулярно, скрещивающейся с ним диагонали основания. Кроме того, если прямая l и плоскость α перпендикулярны одной и той же прямой, то прямая l либо лежит в плоскости α , либо параллельна ей. Скрещивающиеся прямые SA и BD перпендикулярны и плоскость MM1K1K перпендикулярна прямой SA , поэтому прямая BD либо лежит в плоскости MM1K1K , либо параллельна ей. Второй случай исключается, т.к. по условию задачи точка D лежит на прямой MM1 , т.е. является общей точкой прямой BD и плоскости MM1K1K . Значит, прямая BD лежит в плоскости MM1K1K . В то же время, точка B лежит в плоскости MM1L1L , т.к. она лежит на прямой EF этой плоскости. Следовательно, точка B лежит на прямой MM1 пересечения плоскостей MM1K1K и MM1L1L . Тогда M – середина диагонали основания ABCD пирамиды. Тогда MP – общий перпендикуляр скрещивающихся прямых SA и BD . Обозначим AB=a . Тогда

SA=2a, AM = MD=BD = , SM = = =,


MP = = = ,


LP = MP tg LMP = MP tg 30o = · = ,


SKLMN = KM· LN = · 2MP· 2LP = 2MP· LP = 2· · = .

Из равенства треугольников BMF и ELF следует, что EL = MB = MD = , поэтому LL1 = 2EL = a . Пусть V1 и V2 – объёмы призмы KLMNK1L1M1N1 и пирамиды SABCD . Тогда
V1=SKLMN· LL1 = · a = ,


V2 = SABCD· SM = a2· = .

Следовательно,
= = .


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8892

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .