ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111581
Темы:    [ Медиана делит площадь пополам ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Сторону AB треугольника ABC продолжили за вершину B и выбрали на луче AB точку A1 так, что точка B – середина отрезка AA1 . Сторону BC продолжили за вершину C и отметили на продолжении точку B1 так, что C – середина отрезка BB1 . Аналогично, продолжили сторону CA за вершину A и отметили на продолжении точку C1 так, что A – середина CC1 . Найдите площадь треугольника A1B1C1 , если площадь треугольника A1B1C1 равна 1.

Ответ

7.00

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4686

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .