ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111654
Темы:    [ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O.
Докажите, что   SAKON + SCLOM = SBKOL + SDNOM.


Решение

Отрезок OK – медиана треугольника AOB, поэтому  SAOK = SBOK.   Аналогично  SAON = SDON,  SCOL = SBOL,  SCOM = SDOM.  Следовательно,
SAKON + SCLOM = (SAOK + SAON) + (SCOL + SCOM) = (SBOK + SDON) + (SBOL + SDOM) = (SBOK + SBOL) + (SDOM + SDON) = SBKOL + SDNOM.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2901
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 4
Название Площади частей, на которые разбит четырехугольник
Тема Площадь четырехугольника
задача
Номер 04.018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .