ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111656
Темы:    [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём  AA1 = BB1 = pAB  и  CC1 = DD1 = pCD,  где
p < ½.  Докажите, что  SA1B1C1D1 = (1 – 2p)SABCD.


Решение

  Из задачи 111655 сразу следует, что  SABCD = SABD1 + SCDB1.
  Значит,   SA1B1C1D1 = SA1B1D1 + SC1D1B1 = (1 – 2p)SABD1 + (1 – 2p)SCDB1 = (1 – 2p)SABCD.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2903

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .