ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111703
Темы:    [ Вспомогательные подобные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.


Решение

Прямоугольные треугольники BDC и BCA подобны, DK и CF – их соответствующие биссектрисы, поэтому  AB : BF = BC : BK,  значит,  FK || AC.  Аналогично   FL || BC.  Четырёхугольник CLFK – прямоугольник, диагональ CF которого – биссектриса угла KCL. Следовательно, CLFK – квадрат.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2897

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .