ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 115304
УсловиеПрямая, проходящая через точку пересечения диагоналей трапеции ABCD параллельно основаниям BC и AD, пересекает сторону CD в точке K. Окружность проходит через вершины A и B трапеции, пересекает её основания BC и AD в точках X и Y соответственно и касается её стороны CD в точке K. Докажите, что прямая XY проходит через точку пересечения прямых AB и CD. Также доступны документы в формате TeX РешениеПусть O – точка пересечения диагоналей трапеции. По теореме о касательной и секущей CK² = CX·CB и
DK² = DY·DA, поэтому Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |