ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115602
Темы:    [ Пересекающиеся окружности ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

K и M — точки пересечения двух окружностей. Из точки K проведены два луча, один из которых пересекает первую окружность в точке A , а вторую в точке B ; другой пересекает первую окружность в точке C , вторую в точке D . Докажите, что углы MAB и MCD равны.

Решение

Рассмотрим случай, изображённый на рисунке. Четырёхугольник AKCM — вписанный, поэтому

BAM= KAM= 180o- KCM = MCD.

Что и требовалось доказать. Аналогично рассматриваются остальные случаи.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3352

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .