ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115612
Темы:    [ Свойства медиан. Центр тяжести треугольника. ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точка M расположена внутри треугольника ABC. Известно, что треугольники AMB, AMC и BMC равновелики.
Докажите, что M – точка пересечения медиан треугольника ABC.


Решение

  Продолжим отрезок AM до пересечения со стороной BC в точке K. Пусть P и Q – проекции точек соответственно B и C на прямую AM. Тогда  BP = CQ  как высоты равновеликих треугольников AMB и AMC, опущенные на их общую сторону AM. Если точки P и Q совпадают, то они совпадают с точкой K. В этом случае K – середина BC, то есть AK – медиана треугольника ABC. Если же точки P и Q различны, то прямоугольные треугольники BKP и CKQ равны по катету и острому углу, значит,  BK = CK,  то есть и в этом случае AK – медиана треугольника ABC.
  Аналогично точка M лежит на медианах треугольника ABC, проведённых из вершин B и C. Следовательно, M – точка пересечения медиан этого треугольника.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3362

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .