ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115976
Темы:    [ Вневписанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.


Решение

BD – биссектриса внешнего угла B (см. задачу 53446). Треугольник CBD – равнобедренный, поэтому  ∠GCD = ∠BDC = ∠DCB  (G – точка на продолжении отрезка AC за точку C), то есть CD – биссектриса внешнего угла C. Точка D пересечения этих биссектрис, как известно, является центром вневписанной окружности.

Источники и прецеденты использования

задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .