ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116251
УсловиеТри спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м? РешениеПрисвоим номера спортсменам по убыванию их скоростей на старте. Нарисуем графики их движения, откладывая время по оси абсцисс, а расстояние до точки A – по оси ординат. Пусть O – начало координат, S – точка на оси ординат сооответствующая точке B, (OS = 60 м), K, L, M – точки на графиках трёх спортсменов в момент их нахождения в точке B, T – точка на оси абсцисс, соответствующая моменту финиша, P, Q, R – точки, соответствующие моменту встречи первого и второго, второго и третьего, третьего и первого спортсменов соответственно, P', Q' и R' – проекции этих точек на ось ординат (см. рис.). Заметим, что для любых трёх заданных точек на прямой существует единственная точка, сумма расстояний от которой до заданных будет минимальной – это средняя из трёх заданных точек. Следовательно, тренер всегда будет находиться рядом со спортсменом, который находился между двумя другими. Тогда график движения тренера описывается ломаной OPRQT, а длина l его пути равна OP' + P'R' + R'Q' + Q'O. Обозначим длины отрезков KL, LM и OT через a, b и t соответственно. Так как KL || OT, то треугольники KPL и TPO подобны и
Так как b < t – a, а выражение
тем меньше, чем больше b, то и ОтветНе мог. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|