ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116353
Темы:    [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BN и CK пересекаются в точке O. Найдите площадь треугольника BOK.


Решение

Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам, т.е. , а т.к. AB = c, то

Следовательно,

BO – биссектриса треугольника BKC, поэтому

Следовательно,


Ответ

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2931

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .