ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116357
Темы:    [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четырехугольники (прочее) ]
Сложность: 3-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.


Решение

Проведём диагональ BD четырёхугольника ABCD. Тогда

Поэтому,

Следовательно,


Ответ

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2935

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .