ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116623
УсловиеВ турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что P = Q. РешениеПусть n – общее число команд, m – число игр, xk и yk – количество побед и поражений k-й команды. Заметим, что xk + yk = n – 1. Поэтому а P – Q = (n – 1)((x1 + ... + xn) – (y1 + ... + yn)) = (n – 1)(m – m) = 0. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|