ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116660
Темы:    [ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 5,6,7
В корзину
Прислать комментарий

Условие

Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?


Решение

  Самое маленькое число, представимое в виде произведения двух трёхзначных чисел, это  100·100 = 10000.  Следующее такое число:
100·101 = 10100,  поэтому числа 10001, 10002, ..., 10099 – неразложимые. Таким образом, указано 99 идущих подряд неразложимых пятизначных чисел.
  Больше 99 неразложимых чисел идти подряд не может: каждое сотое пятизначное число оканчивается на два нуля, значит, его можно представить в виде произведения трёхзначного числа на 100.


Ответ

99 чисел.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 10 (2012 год)
Дата 2012-03-9
класс
Класс 6 класс
задача
Номер 6.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .