ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116719
Темы:    [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

В команде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)


Решение

Занумеруем сторожей в порядке убывания разряда. У сторожей жизнь делится на равные периоды сна и дежурства. При этом у каждого сторожа периоды, как минимум, втрое короче, чем у предыдущего; поэтому любой период предыдущего делится, как минимум, на три части периодами следующего, причём как минимум две из этих частей будут целыми периодами следующего. Следовательно, период сна предыдущего содержит целый период сна следующего. Так продолжая, найдём вложенный друг в друга набор периодов снов всех сторожей. В день, входящий в самый маленький из вложенных периодов сна, никто не дежурит.


Ответ

Не может.

Замечания

Баллы 6 (8-9 кл.), 4 (10-11 кл.)

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2011/2012
Номер 33
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
Задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Дата 2011/2012
Номер 33
вариант
Вариант весенний тур, сложный вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .