ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116833
УсловиеПетя и Вася играют в следующую игру. Петя загадывает натуральное число x с суммой цифр 2012. За один ход Вася выбирает любое натуральное число a и узнаёт у Пети сумму цифр числа |x – a|. Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить x? РешениеОбозначим через S(n) сумму цифр числа n. Алгоритм. Первым ходом Вася называет 1. Если число x оканчивается на k нулей, то S(x – 1) = 2011 + 9k. Таким образом Вася узнаёт положение самой правой ненулевой цифры в x. Положим x1 = x – 10k. Вася знает, что S(x1) = 2011. Подобрав на втором ходу число a так, что x – a = x1 – 1, Вася узнаёт сколько нулей в конце x1. Пусть их m. Положим x2 = x1 – 10m. Тогда S(x2) = 2010. Подобрав на третьем ходу число a так, что Оценка. Пусть Петя признался, что в записи x есть только нули и единицы, то есть x = 10k2012 + 10k2011 + ... + 10k1, где k2012 > k2011 > ... > k1. При этом задача Васи сводится к выяснению значений показателей ki. Пусть Васе не везёт, и на i-м ходу оказывается, что 10ki больше предъявленного Васей числа a. Тогда, независимо от значений k2012, ..., ki+1, S(x – a) = S(10ki – a) + (2012 – i). Тем самым, о значениях k2012, ..., ki+1 ничего не известно (кроме того, что все они больше ki). В частности, после 2011 ходов может остаться неизвестным точное значение k2012. Ответ2012 ходов. Замечания8-9 кл. – 10 баллов, 10-11 кл. – 8 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|