ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116851
Темы:    [ Трапеции (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Через концы основания BC трапеции ABCD провели окружность, которая пересекла боковые стороны AB и CD в точках M и N соответственно. Известно, что точка T пересечения отрезков AN и DM также лежит на этой окружности. Докажите, что  TB = TC.


Решение

Так как четырёхугольник MBCN – вписанный, то  ∠MBC = ∠MND  (см. рис.).

Следовательно,  ∠MND + ∠MAD = ∠MBC + ∠MAD = 180°,  поэтому четырёхугольник MADN – также вписанный, и  ∠TCB = ∠TND = ∠TMA = ∠TBC.  Значит,  TB = TC.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2012
класс
Класс 9
Задача
Номер 9.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .