ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30392
Темы:    [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

а) p,  p + 10,  p + 14  – простые числа. Найдите p.

б) p,  2p + 1,  4p + 1  – простые числа. Найдите p.


Подсказка

Рассмотрите остатки от деления на 3. Одно из этих чисел делится на 3.


Ответ

p = 3.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 035
книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 12
Название Уравнения в целых числах
Тема Уравнения в целых числах
задача
Номер 02
книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 3
Название Сравнения
Тема Деление с остатком. Арифметика остатков
задача
Номер 04.065
книга
Автор Козлова Е.Г.
Название Сказки и подсказки
задача
Номер 335

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .