ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30430
Темы:    [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8
В корзину
Прислать комментарий

Условие

В стране из каждого города выходит 100 дорог и от каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт.
Докажите, что и теперь от каждого города можно добраться до любого другого.


Решение

Если закрыта дорога AB, то нам достаточно доказать, что и после этого можно добраться из A в B. Если это не так, то в компоненте связности, содержащей A, все вершины, кроме A, – чётные. Но наличие ровно одной нечётной вершины противоречит задаче 87972 б).

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 6
Название Графы-1
Тема Теория графов
задача
Номер 017
книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 5
Название Графы
Тема Теория графов
задача
Номер 17

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .