ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 30759
УсловиеПусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера: V – E + F = 2. РешениеБудем удалять рёбра по одному, пока граф не превратится в дерево (как в задаче 31098 а). На каждом шаге число как число рёбер, так и число кусков уменьшается на 1 (при удалении ребра два примыкающих к нему куска сливаются в один). Поэтому величина V – E + F не меняется. Но для полученного дерева она равна 2, поскольку E = V – 1 (см. задачу 31098 б), а F = 1. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|