ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30791
Тема:    [ Деревья ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Волейбольная сетка имеет вид прямоугольника размером 50×600 клеток.
Какое наибольшее число верёвочек можно перерезать так, чтобы сетка не распалась на куски?


Решение

Будем рассматривать волейбольную сетку как граф, вершинами которого являются узлы сетки, а рёбрами – верёвочки. В этом графе нужно удалить как можно больше рёбер так, чтобы он остался связным. Будем убирать рёбра по очереди до тех пор, пока это возможно. Заметим, что если в графе есть цикл, то возможно удаление любого ребра этого цикла. Связный граф, не имеющий циклов, является деревом. Поэтому, только получив дерево, мы не сможем убрать ни одного ребра. Подсчитаем число рёбер в нашем графе в этот момент. Количество вершин осталось тем же –  51·601 = 30651.  Число рёбер в дереве на единицу меньше (см. задачу 31098 б), то есть их 30650. Сначала же их было  601·50 + 600·51 = 60650.  Таким образом, можно удалить 30000 рёбер (но не более!).


Ответ

30000 верёвочек.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 13
Название Графы-2
Тема Теория графов
задача
Номер 013

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .