ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30900
Темы:    [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

n – натуральное число. Докажите, что  nn > (n + 1)n–1.


Решение

  Применим метод математической индукции. База  (n = 2)  очевидна.
  Шаг индукции.     по предположению индукции.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 16
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 057

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .