ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 31089
Темы:    [ Ориентированные графы ]
[ Обход графов ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).


Решение

Это – переформулировка задачи 30828.

Источники и прецеденты использования

книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 5
Название Графы
Тема Теория графов
задача
Номер 21

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .