ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 31272
УсловиеДоказать, что в любой бесконечной арифметической прогрессии из натуральных чисел РешениеПусть d – разность прогрессии. a) Пусть a – член прогрессии, больший 1. Тогда все члены вида a + nad делятся на a. б) Пусть в прогрессии есть один точный квадрат: a². Тогда все числа вида (a + nd)² = a² + (2a + nd)nd принадлежат прогрессии. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|