ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32032
Темы:    [ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.


Решение

Обозначим данные точки M1, M2, ..., M1983. Рассмотрим на окружности две произвольные диаметрально противоположные точки N1 и N2. Согласно неравенству треугольника, учитывая, что  N1N2 = 2,  для каждой точки Mi можно записать  MiN1 + MiN2 ≥ 2.  Сложив эти неравенства, получим     Значит, хотя бы одна из двух сумм в левой части последнего неравенства не меньше 1983.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 06
Дата 1983
задача
Номер 05

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .