ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 32045
УсловиеДва гроссмейстера по очереди ставят на шахматную доску ладьи (за один ход – одну ладью) так, чтобы они не били друг друга. Тот, кто не сможет поставить ладью, проигрывает. Кто выиграет при правильной игре – первый или второй гроссмейстер? РешениеПоставить ладью на некоторое поле можно тогда и только тогда, когда ни на горизонтали, ни на вертикали, содержащей это поле, не стоит ладьи. Поэтому описанная выше игра равносильна следующей: гроссмейстеры по очереди вычеркивают из набора букв a, b, ..., h и цифр 1, 2, ..., 8 по одной букве и цифре. Очевидно, что как бы ни ходили игроки, после восьмого хода все буквы и цифры будут вычеркнуты. Восьмой ход принадлежит второму, поэтому первый не сможет сделать следующего хода. Замечания1. Заметим, что второй игрок выигрывает независимо от того, как будут играть он и его соперник. 2. Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |