ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32098
Темы:    [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с высотами ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника.


Решение

  Обозначим стороны треугольника a, b и c так, что высоты, опущенные на стороны a и b, не меньше этих сторон. По условию  ha ≥ a,  hb ≥ b.  Поскольку перпендикуляр является кратчайшим расстоянием от точки до прямой, то  a ≤ ha ≤ b ≤ hb ≤ a,  откуда  a = b = ha = hb.
  Условие  a = b  означает, что треугольник равнобедренный, а условия  a = hb  и  b = ha  – что стороны a и b являются одновременно высотами, то есть они перпендикулярны друг другу. Итак, рассматриваемый треугольник прямоугольный и равнобедренный.


Ответ

90°, 45°, 45°.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 11
Дата 1988
задача
Номер 07

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .