ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32103
Темы:    [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 5,6,7,8,9
В корзину
Прислать комментарий

Условие

На турнире им. Ломоносова в институте МИМИНО были конкурсы по математике, физике, химии, биологии и бальным танцам. Когда турнир закончился, выяснилось, что на каждом конкурсе побывало нечётное количество школьников, и каждый школьник участвовал в нечётном количестве конкурсов. Чётное или нечётное число школьников пришло на турнир в МИМИНО?


Решение

  Рассмотрим сумму количеств участников по всем пяти конкурсам. Эта сумма нечётна, так как на каждом конкурсе побывало нечётное количество школьников.
  С другой стороны, это же число можно получить, сложив для каждого школьника количество конкурсов, в которых он участвовал. Поскольку сумма нечётна и все слагаемые нечётны, то их количество нечётно.


Ответ

Нечётное.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 12
Дата 1989
задача
Номер 02

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .